Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 2023.
Article in English | EuropePMC | ID: covidwho-2296527

ABSTRACT

Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and protein nanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely-arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T-cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared to conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for three months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses. Graphical The SARS-CoV-2 spike protein was engineered to recruit ESCRT proteins to its cytoplasmic tail by adding an EABR motif, which induced the assembly of enveloped virus-like particles. A COVID-19 mRNA vaccine encoding spike-EABR elicited superior antibody responses compared to a conventional mRNA vaccine in mice.

2.
Lancet Microbe ; 4(4): e236-e246, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287645

ABSTRACT

BACKGROUND: The efficacy of SARS-CoV-2 vaccines in preventing severe COVID-19 illness and death is uncertain due to the rarity of data in individual trials. How well the antibody concentrations can predict the efficacy is also uncertain. We aimed to assess the efficacy of these vaccines in preventing SARS-CoV-2 infections of different severities and the dose-response relationship between the antibody concentrations and efficacy. METHODS: We did a systematic review and meta-analysis of randomised controlled trials (RCTs). We searched PubMed, Embase, Scopus, Web of Science, Cochrane Library, WHO, bioRxiv, and medRxiv for papers published between Jan 1, 2020 and Sep 12, 2022. RCTs on the efficacy of SARS-CoV-2 vaccines were eligible. Risk of bias was assessed using the Cochrane tool. A frequentist, random-effects model was used to combine efficacy for common outcomes (ie, symptomatic and asymptomatic infections) and a Bayesian random-effects model was used for rare outcomes (ie, hospital admission, severe infection, and death). Potential sources of heterogeneity were investigated. The dose-response relationships of neutralising, spike-specific IgG and receptor binding domain-specific IgG antibody titres with efficacy in preventing SARS-CoV-2 symptomatic and severe infections were examined by meta-regression. This systematic review is registered with PROSPERO, CRD42021287238. FINDINGS: 28 RCTs (n=286 915 in vaccination groups and n=233 236 in placebo groups; median follow-up 1-6 months after last vaccination) across 32 publications were included in this review. The combined efficacy of full vaccination was 44·5% (95% CI 27·8-57·4) for preventing asymptomatic infections, 76·5% (69·8-81·7) for preventing symptomatic infections, 95·4% (95% credible interval 88·0-98·7) for preventing hospitalisation, 90·8% (85·5-95·1) for preventing severe infection, and 85·8% (68·7-94·6) for preventing death. There was heterogeneity in the efficacy of SARS-CoV-2 vaccines against asymptomatic and symptomatic infections but insufficient evidence to suggest whether the efficacy could differ according to the type of vaccine, age of the vaccinated individual, and between-dose interval (p>0·05 for all). Vaccine efficacy against symptomatic infection waned over time after full vaccination, with an average decrease of 13·6% (95% CI 5·5-22·3; p=0·0007) per month but can be enhanced by a booster. We found a significant non-linear relationship between each type of antibody and efficacy against symptomatic and severe infections (p<0·0001 for all), but there remained considerable heterogeneity in the efficacy, which cannot be explained by antibody concentrations. The risk of bias was low in most studies. INTERPRETATION: The efficacy of SARS-CoV-2 vaccines is higher for preventing severe infection and death than for preventing milder infection. Vaccine efficacy wanes over time but can be enhanced by a booster. Higher antibody titres are associated with higher estimates of efficacy but precise predictions are difficult due to large unexplained heterogeneity. These findings provide an important knowledge base for interpretation and application of future studies on these issues. FUNDING: Shenzhen Science and Technology Programs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , Asymptomatic Infections , COVID-19/prevention & control , SARS-CoV-2 , Immunoglobulin G , Randomized Controlled Trials as Topic
3.
Front Public Health ; 11: 1129123, 2023.
Article in English | MEDLINE | ID: covidwho-2269384

ABSTRACT

Objective: The COVID-19 pandemic has raised concerns about child and adolescent mental health issues, such as self-harm. The impact of society-wide isolation on self-harming behaviors among adolescents in China is unclear. In addition, adolescents of different ages and sexes have varying abilities to cope with environmental changes. However, these differences are rarely considered in self-harm studies. We aimed to characterize the age- and sex-dependent effects of COVID-19-related society-wide isolation on self-harm among adolescents in East China. Methods: We collected 63,877 medical records of children and adolescents aged 8-18 who had an initial visit to Shanghai Mental Health Center in China between 2017 and 2021 and charted annual self-harm rates for each age and sex. Using interrupted time series analysis, we modeled global and seasonal trends and the effect of COVID-19-related society-wide isolation on self-harm rates. Results: Females aged 10-17 and males aged 13-16 exhibited significantly increasing trends in self-harm rate (p fdr < 0.05) in the past 5 years. Eleven-year-old females in 2020 showed a self-harm rate (37.30%) that exceeded the peak among all ages in 2019 (age 13, 36.38%). The COVID-19-related society-wide isolation elevated self-harm rates in female patients aged 12 [RR 1.45 (95% CI 1.19-1.77); p fdr = 0.0031] and 13 years [RR 1.33 (95% CI 1.15-1.5); p fdr = 0.0031], while males were less affected. Further, females with emotional disorders dominated the increased self-harm rates. Conclusion: Society-wide isolation has had a significant impact on early adolescent females in East China, especially for those with emotional disturbances, and has brought forward the peak in adolescent self-harm rates. This study calls for attention to the risk of self-harm in early adolescents.


Subject(s)
COVID-19 , Self-Injurious Behavior , Male , Child , Humans , Adolescent , Female , Mental Health , Pandemics , COVID-19/epidemiology , China/epidemiology , Self-Injurious Behavior/epidemiology , Self-Injurious Behavior/psychology
4.
Int J Biol Sci ; 18(14): 5317-5328, 2022.
Article in English | MEDLINE | ID: covidwho-2025286

ABSTRACT

Background: Macau is a densely populated international tourist city. Compared to most tensely populated countries/territories, the prevalence and mortality of COVID-19 in Macau are lower. The experiences in Macau could be helpful for other areas to combat the COVID-19 pandemic. This article introduced the endeavours and achievements of Macau in combatting the COVID-19 pandemic. Method: Both qualitative and quantitative analysis methods were used to explore the work, measures, and achievements of Macau in dealing with the COVID-19 pandemic. Results: The results revealed that Macau has provided undifferentiated mask purchase reservation services, COVID-19 vaccination services to all residents and non-residents in Macau along with delivering multilingual services, in Chinese, English and Portuguese, to different groups of the population. To facilitate the travels of people, business and trades between Macau and mainland China, the Macau government launched the Macau Health Code System, which uses the health status declaration, residence history declaration, contact history declaration of the declarant to match various relevant backend databases within the health authority and provide a risk-related colour code operations. The Macau Health Code System connects to the Chinese mainland's own propriety health code system seamlessly, whilst effectively protecting the privacy of the residents. Macau has also developed the COVID-19 Vaccination Appointment system, the Nucleic Acid Test Appointment system, the Port and Entry/Exit Quarantine system, the medical and other supporting systems. Conclusion: The efforts in Macau have achieved remarkable results in COVID-19 prevention and control, effectively safeguarding the lives and health of the people and manifesting the core principle of "serving the public". The measures used are sustainable and can serve as an important reference for other countries/regions.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macau/epidemiology , Pandemics/prevention & control
5.
Research (Wash D C) ; 2022: 9864089, 2022.
Article in English | MEDLINE | ID: covidwho-1979971

ABSTRACT

Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an urgent requirement for the development of additional diagnostic tools for further analysis of the disease. The isolated nanobody Nb11-59 binds to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) with high affinity to neutralize the virus and block the angiotensin-converting enzyme 2- (ACE2-) RBD interaction. Here, we introduce a novel nanobody-based radiotracer named 68Ga-Nb1159. The radiotracer retained high affinity for the RBD and showed reliable radiochemical characteristics both in vitro and in vivo. Preclinical positron emission tomography (PET) studies of 68Ga-Nb1159 in mice revealed its rapid clearance from circulation and robust uptake into the renal and urinary systems. Fortunately, 68Ga-Nb1159 could specifically reveal the distribution of the RBD in mice. This study also helped to evaluate the pharmacodynamic effects of the neutralizing nanobody. Moreover, 68Ga-Nb1159 may be a promising tool to explore the distribution of the RBD and improve the understanding of the virus. In particular, this study identified a novel molecular radioagent and established a reliable evaluation method for specifically investigating the RBD through noninvasive and visual PET technology.

7.
Sep Purif Technol ; 298: 121565, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1905590

ABSTRACT

Public health safety issues have been plaguing the world since the pandemic outbreak of coronavirus disease (COVID-19). However, most personal protective equipments (PPE) do not have antibacterial and anti- toxicity effects. In this work, we designed and prepared a reusable, antibacterial and anti-toxicity Polyacrylonitrile (PAN) based nanofibrous membrane cooperated with Ag/g-C3N4 (Ag-CN), Myoporum.bontioides (M. bontioides) plant extracts and Ag nanoparticles (NPs) by an electrospinning-process. The SEM and TEM characterization revealed the formation of raised, creased or wrinkled areas on the fiber surface caused by the Ag nanoparticles, the rough surface prevented the aerosol particles on the fiber surface from sliding and stagnating, thus providing excellent filtration performance. The PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane could be employed as a photocatalytic bactericidal material, which not only degraded 96.37% of methylene blue within 150 min, but also exhibited the superior bactericidal effect of 98.65 ± 1.49% and 97.8 ± 1.27% against E. coli and S. aureus, respectively, under 3 hs of light exposure. After 3 cycles of sterilization experiments, the PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane maintained an efficient sterilization effect. Molecular docking revealed that the compounds in M. bontioides extracts interacted with neo-coronavirus targets mainly on Mpro and RdRp proteins, and these compounds had the strongest docking energy with Mpro protein, the shortest docking radius, and more binding sites for key amino acids around the viral protein targets, which influenced the replication and transcription process of neo-coronavirus. The PAN/M.bontioides/Ag-CN/Ag nanofibrous membrane also performed significant inhibition of influenza A virus H3N2. The novel nanofiber membrane is expected to be applied to medical masks, which will improve human isolation and protection against viruses.

8.
Chinese Journal of Dermatovenereology ; 36(5):593-598, 2022.
Article in Chinese | GIM | ID: covidwho-1903929

ABSTRACT

The infection caused by SARS-CoV-2 may result in a series of skin damages. In addition, some patients report the re-activation of the varicella-zoster virus, which might be related to T cell immune dysfunction caused by SARS-CoV-2 infection. Recently, studies reported herpes zoster occurrence after inoculating the COVID-19 vaccine. At present, the mechanism of interaction between COVID-19, COVID-19 vaccine and herpes zoster remains unclear, and more high-quality studies are required to further define the relationship.

9.
Life (Basel) ; 12(6)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1869690

ABSTRACT

The ACE2 receptor, as the potential entrance site of SARS-CoV-2-affected cells, plays a crucial role in spreading infection. The DX600 peptide is a competitive inhibitor of ACE2. We previously constructed the 68Ga-labeled DOTA-DX600 (also known as 68Ga-HZ20) peptide and confirmed its ACE2 binding ability both in vitro and in vivo. In this research, we aimed to investigate the noninvasive mapping of ACE2 expression in fowl using 68Ga-HZ20 micro-PET. We chose pigeons as an animal model and first studied the administration method of 68Ga-HZ20 by direct site injection or intravenous injection. Then, the dynamic micro-PET scan of 68Ga-HZ20 was conducted at 0-40 min. Additionally, 18F-FDG was used for comparison. Finally, the pigeons were sacrificed, and the main organs were collected for further immunoPET and IHC staining. Micro PET/CT imaging results showed that 68Ga-HZ20 uptake was distributed from the heart at the preliminary injection to the kidneys, liver, stomach, and lungs over time, where the highest uptake was observed in the kidneys (SUVmax = 6.95, 20 min) and lung (SUVmax = 1.11, 20 min). Immunohistochemical experiments were carried out on its main organs. Compared to the SUVmax data, the IHC results showed that ACE2 was highly expressed in both kidneys and intestines, and the optimal imaging time was determined to be 20 min after injection through correlation analysis. These results indicated that 68Ga-HZ20 is a potential target molecule for SARS-CoV-2 in fowl, which is worthy of promotion and further study.

10.
PLoS Negl Trop Dis ; 16(4): e0010357, 2022 04.
Article in English | MEDLINE | ID: covidwho-1854982

ABSTRACT

BACKGROUND: Scrub typhus (ST) is a life-threatening infectious disease if appropriate treatment is unavailable. Large discrepancy of clinical severity of ST patients was reported among age groups, and the underlying risk factors for severe disease are unclear. METHODS: Clinical and epidemiological data of ST patients were collected in 55 surveillance hospitals located in Guangzhou City, China, from 2012 to 2018. Severe prognosis and related factors were determined and compared between pediatric and elderly patients. RESULTS: A total of 2,074 ST patients including 209 pediatric patients and 1,865 elderly patients were included, with a comparable disease severity rate of 11.0% (95% CI 7.1%-16.1%) and 10.3% (95% CI 9.0%-11.8%). Different frequencies of clinical characteristics including lymphadenopathy, skin rash, enlarged tonsils, etc. were observed between pediatric and elderly patients. Presence of peripheral edema and decreased hemoglobin were the most important predictors of severe illness in pediatric patients with adjusted ORs by 38.99 (9.96-152.67, p<0.001) and 13.22 (1.54-113.50, p = 0.019), respectively, while presence of dyspnea and increased total bilirubin were the potential determinants of severe disease in elderly patients with adjusted ORs by 11.69 (7.33-18.64, p<0.001) and 3.17 (1.97-5.11, p<0.001), respectively. Compared with pediatric patients, elderly patients were more likely to receive doxycycline (64.8% v.s 9.9%, p<0.001), while less likely to receive azithromycin therapy (5.0% v.s 41.1%, p<0.001). CONCLUSION: The disease severity rate is comparable between pediatric and elderly ST patients, while different clinical features and laboratory indicators were associated with development of severe complications for pediatric and elderly patients, which is helpful for diagnosis and progress assessment of disease for ST patients.


Subject(s)
Scrub Typhus , Aged , Child , China/epidemiology , Doxycycline/therapeutic use , Humans , Risk Factors , Scrub Typhus/complications , Scrub Typhus/drug therapy , Scrub Typhus/epidemiology , Severity of Illness Index
11.
Acta Pharmacol Sin ; 43(7): 1749-1757, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1671539

ABSTRACT

The spike protein of SARS-CoV-2 interacts with angiotensin-converting enzyme 2 (ACE2) of human respiratory epithelial cells, which leads to infection. Furthermore, low-dose radiation has been found to reduce inflammation and aid the curing of COVID-19. The receptor binding domain (RBD), a recombinant spike protein with a His tag at the C-terminus, binds to ACE2 in human body. We thus constructed a radioiodinated RBD as a molecule-targeted probe to non-invasively explore ACE2 expression in vivo, and to investigate radiotherapy pathway for inhibiting ACE2. RBD was labeled with [124I]NaI using an N-bromosuccinimide (NBS)-mediated method, and 124I-RBD was obtained after purification with a specific activity of 28.9 GBq/nmol. Its radiochemical purity was (RCP) over 90% in saline for 5 days. The dissociation constant of 124I-RBD binding to hACE2 was 75.7 nM. The uptake of 124I-RBD by HeLaACE+ cells at 2 h was 2.96% ± 0.35%, which could be substantially blocked by an excessive amount of RBD, and drop to 1.71% ± 0.23%. In BALB/c mice, the biodistribution of 124I-RBD after intravenous injection showed a moderate metabolism rate, and its 24 h-post injection (p.i.) organ distribution was similar to the expression profile in body. Micro-PET imaging of mice after intrapulmonary injection showed high uptake of lung at 1, 4, 24 h p.i.. In conclusion, the experimental results demonstrate the potential of 124I-RBD as a novel targeted molecular probe for COVID-19. This probe may be used for non-invasive ACE2 mapping in mammals.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Mammals/metabolism , Mice , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tissue Distribution
12.
Chin Med J (Engl) ; 134(16): 1920-1929, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1522371

ABSTRACT

BACKGROUND: The global pandemic coronavirus disease 2019 (COVID-19) has become a major public health problem and presents an unprecedented challenge. However, no specific drugs were currently proven. This study aimed to evaluate the comparative efficacy and safety of pharmacological interventions in patients with COVID-19. METHODS: Medline, Embase, the Cochrane Library, and clinicaltrials.gov were searched for randomized controlled trials (RCTs) in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/SARS-CoV. Random-effects network meta-analysis within the Bayesian framework was performed, followed by the Grading of Recommendations Assessment, Development, and Evaluation system assessing the quality of evidence. The primary outcome of interest includes mortality, cure, viral negative conversion, and overall adverse events (OAEs). Odds ratio (OR) with 95% confidence interval (CI) was calculated as the measure of effect size. RESULTS: Sixty-six RCTs with 19,095 patients were included, involving standard of care (SOC), eight different antiviral agents, six different antibiotics, high and low dose chloroquine (CQ_HD, CQ_LD), traditional Chinese medicine (TCM), corticosteroids (COR), and other treatments. Compared with SOC, a significant reduction of mortality was observed for TCM (OR = 0.34, 95% CI: 0.20-0.56, moderate quality) and COR (OR = 0.84, 95% CI: 0.75-0.96, low quality) with improved cure rate (OR = 2.16, 95% CI: 1.60-2.91, low quality for TCM; OR = 1.17, 95% CI: 1.05-1.30, low quality for COR). However, an increased risk of mortality was found for CQ_HD vs. SOC (OR = 3.20, 95% CI: 1.18-8.73, low quality). TCM was associated with decreased risk of OAE (OR = 0.52, 95% CI: 0.38-0.70, very low quality) but CQ_HD (OR = 2.51, 95% CI: 1.20-5.24) and interferons (IFN) (OR = 2.69, 95% CI: 1.02-7.08) vs. SOC with very low quality were associated with an increased risk. CONCLUSIONS: COR and TCM may reduce mortality and increase cure rate with no increased risk of OAEs compared with standard care. CQ_HD might increase the risk of mortality. CQ, IFN, and other antiviral agents could increase the risk of OAEs. The current evidence is generally uncertain with low-quality and further high-quality trials are needed.


Subject(s)
COVID-19 , Humans , Medicine, Chinese Traditional , Network Meta-Analysis , Pandemics , SARS-CoV-2
13.
Front Pharmacol ; 12: 770125, 2021.
Article in English | MEDLINE | ID: covidwho-1512052

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2021.668407.].

14.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1354275

ABSTRACT

For epidemic prevention and control, the identification of SARS-CoV-2 subpopulations sharing similar micro-epidemiological patterns and evolutionary histories is necessary for a more targeted investigation into the links among COVID-19 outbreaks caused by SARS-CoV-2 with similar genetic backgrounds. Genomic sequencing analysis has demonstrated the ability to uncover viral genetic diversity. However, an objective analysis is necessary for the identification of SARS-CoV-2 subpopulations. Herein, we detected all the mutations in 186 682 SARS-CoV-2 isolates. We found that the GC content of the SARS-CoV-2 genome had evolved to be lower, which may be conducive to viral spread, and the frameshift mutation was rare in the global population. Next, we encoded the genomic mutations in binary form and used an unsupervised learning classifier, namely PhenoGraph, to classify this information. Consequently, PhenoGraph successfully identified 303 SARS-CoV-2 subpopulations, and we found that the PhenoGraph classification was consistent with, but more detailed and precise than the known GISAID clades (S, L, V, G, GH, GR, GV and O). By the change trend analysis, we found that the growth rate of SARS-CoV-2 diversity has slowed down significantly. We also analyzed the temporal, spatial and phylogenetic relationships among the subpopulations and revealed the evolutionary trajectory of SARS-CoV-2 to a certain extent. Hence, our results provide a better understanding of the patterns and trends in the genomic evolution and epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Epidemics , Genomics , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity
15.
Nat Commun ; 12(1): 4886, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1349666

ABSTRACT

Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. We develop the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detect an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage. In concert with other variants, like B.1.1.7, the rise of B.1.526 appears to have extended the duration of the second wave of COVID-19 cases in NYC in early 2021. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, supporting the public health relevance of this lineage.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Genome, Viral , Humans , Models, Molecular , Mutation , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , Software , Spike Glycoprotein, Coronavirus/genetics
16.
Front Pharmacol ; 12: 668407, 2021.
Article in English | MEDLINE | ID: covidwho-1337662

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emergent infectious pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is highly contagious and pathogenic. COVID-19 has rapidly swept across the world since it was first discovered in December 2019 and has drawn significant attention worldwide. During the early stages of the outbreak in China, traditional Chinese medicines (TCMs) were involved in the whole treatment process. As an indispensable part of TCM, Chinese patent medicines (CPMs) played an irreplaceable role in the prevention and treatment of this epidemic. Their use has achieved remarkable therapeutic efficacy during the period of medical observation and clinical treatment of mild, moderate, severe, and critical cases and during convalescence. In order to better propagate and make full use of the benefits of TCM in the treatment of COVID-19, this review will summarize the potential target of SARS-CoV-2 as well as the theoretical basis and clinical efficacy of recommended 22 CPMs by the National Health Commission and the Administration of TCM and local provinces or cities in the treatment of COVID-19. Additionally, the study will further analyze the drug composition, potential active ingredients, potential targets, regulated signaling pathways, and possible mechanisms for COVID-19 through anti-inflammatory and immunoregulation, antiviral, improve lung injury, antipyretic and organ protection to provide meaningful information about the clinical application of CPMs.

17.
Adv Sci (Weinh) ; 8(16): e2100965, 2021 08.
Article in English | MEDLINE | ID: covidwho-1281195

ABSTRACT

Rapid progress has been made to identify and study the causative agent leading to coronavirus disease 2019 (COVID-19) but many questions including who is most susceptible and what determines severity remain unanswered. Angiotensin-converting enzyme 2 (ACE2) is a key factor in the infection process of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, molecularly specific positron emission tomography imaging agents for targeting ACE2 are first developed, and these novel agents are evaluated in vitro, in preclinical model systems, and in a first-in-human translational ACE2 imaging of healthy volunteers and a SARS-CoV-2 recovered patient (NCT04422457). ACE2 expression levels in different organs in live subjects are quantitatively delineated and observable differences are measured in the patient recovered from COVID-19. Surprising sites of uptake in the breast, reproductive system and very low uptake in pulmonary tissues are reported. This novel method can add a unique tool to facilitate SARS-CoV-2 related research and improve understanding of this enigmatic disease. Molecular imaging provides quantitative annotation of ACE2, the SARS-CoV-2 entry receptor, to noninvasively monitor organs impacted by the COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Peptides/pharmacokinetics , SARS-CoV-2/metabolism , Animals , COVID-19/pathology , Cells, Cultured , Female , Gallium Radioisotopes/pharmacokinetics , Humans , Male , Mice , Positron Emission Tomography Computed Tomography , Protein Binding , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Tissue Distribution , Xenograft Model Antitumor Assays
18.
Nature ; 592(7855): 616-622, 2021 04.
Article in English | MEDLINE | ID: covidwho-1075232

ABSTRACT

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine , COVID-19 Vaccines/genetics , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/ultrastructure , Female , Humans , Immunization, Secondary , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Memory/immunology , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/genetics
19.
Travel Med Infect Dis ; 39: 101950, 2021.
Article in English | MEDLINE | ID: covidwho-966342

ABSTRACT

BACKGROUND: To investigate and compare the clinical and imaging features among family members infected with COVID-19. METHODS: We retrospectively collected a total of 34 COVID-19 cases (15 male, 19 female, aged 48 ± 16 years, ranging from 10 to 81 years) from 13 families from January 17, 2020 through February 15, 2020. Patients were divided into two groups: Group 1 - part of the family members (first-generation) who had exposure history and others (second-generation) infected through them, and Group 2 - patients from the same family having identical exposure history. We collected clinical symptoms, laboratory findings, and high-resolution computed tomography (HRCT) features for each patient. Comparison tests were performed between the first- and second-generation patients in Group 1. RESULTS: In total there were 21 patients in Group 1 and 20 patients in Group 2. For Group 1, first-generation patients had significantly higher white blood cell count (6.5 × 109/L (interquartile range (IQR): 4.9-9.2 × 109/L) vs 4.5 × 109/L (IQR: 3.7-5.3 × 109/L); P = 0.0265), higher neutrophil count (4.9 × 109/L (IQR: 3.6-7.3 × 109/L) vs 2.9 × 109/L (IQR: 2.1-3.3 × 109/L); P = 0.0111), and higher severity scores on HRCT (3.9 ± 2.4 vs 2.0 ± 1.3, P = 0.0362) than the second-generation patients. Associated underlying diseases (odds ratio, 8.0, 95% confidence interval: 3.4-18.7, P = 0.0013) were significantly correlated with radiologic severity scores in second-generation patients. CONCLUSION: Analysis of the family cluster cases suggests that COVID-19 had no age or sex predominance. Secondarily infected patients in a family tended to develop milder illness, but this was not true for those with existing comorbidities.


Subject(s)
COVID-19/pathology , Family , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Child , China/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Young Adult
20.
Gen Psychiatr ; 33(5): e100288, 2020.
Article in English | MEDLINE | ID: covidwho-808787

ABSTRACT

BACKGROUND: Medical staff fighting the COVID-19 pandemic are experiencing stress from high occupational risk, panic in the community and the extreme workload. Maintaining the psychological health of a medical team is essential for efficient functioning, but psychological intervention models for emergency medical teams are rare. AIMS: To design a systematic, full-coverage psychological health support scheme for medical teams serving large-scale emergent situations, and demonstrate its effectiveness in a real-world study in Leishenshan Hospital during the COVID-19 epidemic in Wuhan, China. METHODS: The scheme integrates onsite and online mental health resources and features team-based psychosocial support and evidence-based interventions. It contained five modules, including a daily measurement of mood, a daily mood broadcast that promotes positive affirmation, a daily online peer-group activity with themes based on the challenges reported by the team, Balint groups and an after-work support team. The daily mood measurement provides information to the other modules. The scheme also respects the special psychological characteristics of medical staff by promoting their strengths. RESULTS: The scheme economically supported a special medical team of 156 members with only one onsite psychiatrist. Our data reflected that the entire medical team maintained an overall positive outlook (7-9 out of 10 in a Daily Mood Index, DMI) for nearly 6 weeks of continuous working. Since the scheme promoted self-strengths and positive self-affirmation, the number of self-reports of life-related gains were high and played a significant effect on the DMI. Our follow-up investigations also revealed that multiple modules of the scheme received high attention and evaluation levels. CONCLUSION: Our quantitative data from Leishenshan hospital, Wuhan, China, show that the programme is adequate to support the continuous high workload of medical teams. This scheme could be applied to medical teams dealing with emergent situations.

SELECTION OF CITATIONS
SEARCH DETAIL